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ABSTRACT
This paper investigates the effects of uncertainty in rock-physics models on reservoir
parameter estimation using seismic amplitude variation with angle and controlled-
source electromagnetics data. The reservoir parameters are related to electrical resis-
tivity by the Poupon model and to elastic moduli and density by the Xu-White model.
To handle uncertainty in the rock-physics models, we consider their outputs to be ran-
dom functions with modes or means given by the predictions of those rock-physics
models and we consider the parameters of the rock-physics models to be random
variables defined by specified probability distributions. Using a Bayesian framework
and Markov Chain Monte Carlo sampling methods, we are able to obtain estimates
of reservoir parameters and information on the uncertainty in the estimation. The de-
veloped method is applied to a synthetic case study based on a layered reservoir model
and the results show that uncertainty in both rock-physics models and in their param-
eters may have significant effects on reservoir parameter estimation. When the biases
in rock-physics models and in their associated parameters are unknown, conventional
joint inversion approaches, which consider rock-physics models as deterministic func-
tions and the model parameters as fixed values, may produce misleading results. The
developed stochastic method in this study provides an integrated approach for quan-
tifying how uncertainty and biases in rock-physics models and in their associated
parameters affect the estimates of reservoir parameters and therefore is a more robust
method for reservoir parameter estimation.

I N T R O D U C T I O N

Rock-physics models are needed for reservoir parameter es-
timation using seismic amplitude variation with angle (AVA)
and controlled-source electromagnetics (CSEM) data. In prac-
tice, these models are often derived from suitable nearby bore-
hole logs. Firstly, appropriate families of rock-physics models
are chosen. For instance, we may choose a sand-clay model
by Dvorkin and Nur (1996), the Xu-White model by Xu
and White (1995) or a differential effective medium model by

∗E-mail: jchen@lbl.gov

Norris (1985) and Mavko, Mukerji and Dvorkin (1998) for
seismic AVA data and we may choose Archie’s law (Archie
1942) or the Poupon model (Poupon, Loy and Tixier 1954;
Poupon and Leveaux 1971) for CSEM data.

Secondly, the parameters in the chosen rock-physics mod-
els are estimated by fitting them to the selected borehole logs.
Since relationships between the reservoir parameters and the
geophysical attributes are often nonlinear and non-unique, the
derived rock-physics models are inevitably subject to uncer-
tainty and even unknown biases. These may include uncer-
tainty and biases due to an inappropriate choice of the rock-
physics model families and those due to inaccurate estimation
of the associated model parameters.
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Uncertainty in rock-physics models may have significant ef-
fects on reservoir parameter estimation from geophysical data,
especially when the rock-physics models contain unknown bi-
ases. Traditional analyses of the effects of uncertainty in the
rock-physics models are performed by varying a small subset
(e.g., one or two) of the rock-physics parameters while keeping
others unchanged, as performed by Hoversten et al. (2006).
In essence, those methods explore the marginal effects of the
parameters on reservoir parameter estimation and are valid
only when the parameters being investigated are independent
of those being kept unchanged. Since rock-physics parame-
ters often depend on each other, the utility of such approaches
is limited. Additionally, the above methods only analyse the
effects of uncertainty in the estimated rock-physics parame-
ters without considering uncertainty in the rock-physics model
outputs.

An alternative for studying the effects of uncertainty in rock-
physics models is to consider geophysical properties as ran-
dom functions of reservoir parameters, which follow some
probability distributions (e.g., Gaussian distributions), using
a Bayesian framework. The rock-physics models derived from
borehole logs provide only reference values for the reser-
voir parameters being estimated. An example of such an ap-
proach is given by Bachrach (2006), where sediment bulk and
shear moduli and density were considered as random func-
tions of reservoir water saturation and porosity and both
parameters were estimated jointly by conditioning on seis-
mic AVA data. The above methods mainly focus on the ef-
fect of uncertainty in rock-physics model outputs without
considering the effect of uncertainty caused by individual
rock-physics parameters. In practice, both uncertainties ex-
ist and they may affect the estimates of reservoir parameters
differently.

In this study, we choose the Xu-White model to relate reser-
voir parameters to seismic properties and the Poupon model to
relate reservoir parameters to electrical properties. Although
the choice of suitable rock-physics models in practice is an-
other source of uncertainty, this study is focused solely on
investigations of the effects of uncertainty in the chosen rock-
physics models. We develop a Bayesian integrated approach
based on a layered reservoir model, similar to the one given
by Chen et al. (2007), with the addition of stochastic rock-
physics models to account for this source of uncertainty. We
use Markov Chain Monte Carlo methods to explore the joint
posterior probability density function. Bayesian models have
also been demonstrated by Malinverno and Griggs (2004) to
be effective methods for analysing other types of uncertainty
in geophysical inverse problems.

The paper is organized as follows. The second section de-
scribes the stochastic rock-physics models used in this study,
including the Poupon and the Xu-White models and the third
section describes our joint inversion Bayesian model with the
stochastic rock-physics models included. The synthetic case
studies based on a simplified model of an oil-bearing sand
reservoir embedded in a shale section are given in the fourth
section and discussion and conclusions are given in the fifth
section.

S T O C H A S T I C R O C K - P H Y S I C S M O D E L S

In this section, we describe the rock-physics models used in
the joint inversion of seismic AVA and CSEM data. We con-
sider geophysical properties, such as electrical resistivity, elas-
tic bulk and shear moduli and density, as random functions of
reservoir parameters, such as porosity, water saturation and
shale content and of the parameters associated with the rock-
physics models.

Electrical resistivity

We connect electrical resistivity to water saturation, porosity
and shale content via the Indonesia formula of the Poupon
model (Poupon et al. 1954; Poupon and Leveaux 1971). The
model is a modification of Archie’s law (Archie 1942) that
accounts for the effect of shale content and is given by:

S−m
w√
r

= ϕ0.5n

√
rb

+ c1−0.5c

√
rc

, (1)

where r represents electrical resistivity in a given layer, Sw, ϕ

and c represent water saturation, porosity and shale content
in the same layer and rb, rc, m and n represent brine resistivity,
shale resistivity and the exponential components of water sat-
uration and porosity, respectively. The model parameters rb,
rc, m and n are often estimated from nearby borehole logs and
in many cases, the parameters m and n are close to 2 (Mavko
et al. 1998). Figure 1 shows an example of the relationship
between electrical resistivity and water saturation, shale con-
tent and porosity when rb = 0.16 �m, rc = 0.50 �m and m

= n = 2. This relationship will be used in the synthetic study
presented in the fourth section. We can see that electrical re-
sistivity is most sensitive to changes in water saturation and
porosity and that it varies by several orders of magnitude when
water saturation or porosity is small.

Two types of uncertainty may exist in equation (1). The first
type is the uncertainty associated with the model parameters
rb, rc, m and n. To account for the effects of such uncertainty
in joint inversion, we consider these parameters to be random
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(c)Figure 1 An example showing the relation-
ship between electrical resistivity and water
saturation, shale content and porosity,
where rb = 0.16 �m, rc = 0.50 �m and
m = n = 2. In Fig. 1(a), shale con-
tent is 0.1 and porosity is 0.32, in
Fig. 1(b), water saturation is 0.1 and poros-
ity is 0.32 and in Fig. 1(c), both shale content
and water saturation are 0.1.

variables with given distributions (e.g., uniform or truncated
Gaussian distributions). The second type is the uncertainty
associated with the output of the Poupon model; for exam-
ple, this error may arise when the parameterization given in
equation (1) cannot accurately describe the measured resistiv-
ity. Similarly, to account for the effects of this uncertainty, we
consider the predicted resistivity as a random function of wa-
ter saturation, porosity, shale content and model parameters,
defined on the interval of (0, + ∞).

We use a gamma probability distribution with shape param-
eter α and scale parameter β to describe the uncertainty in the
output of the Poupon model. The mean, variance and mode
of the gamma distribution are given by αβ, αβ2 and β(α − 1),
respectively. Let q be the coefficient of variation of electrical
resistivity r, which is defined as the ratio of the standard de-
viation to the mean and is given by q = β

√
α/(αβ) = 1/

√
α.

Let the mode of the gamma distribution be equal to the elec-
trical resistivity obtained from equation (1). Let θ1 = (rb, rc,
m, n)T , where T represents the transpose of the vector. Con-
sequently, we obtain the conditional probability distribution
function of resistivity given the reservoir parameters Sw, ϕ and
c and unknown model parameter θ1 as follows:

f (r | Sw, ϕ, c,θ1) = rα−1

βα�(α)
exp

(
− r

β

)
, (2)

where α = 1/q2 and β = rmode q2/(1 − q2). We use the gamma
distribution rather than the commonly used log-normal dis-

tribution because the gamma distribution provides a more ac-
curate description of errors in electrical resistivity for a given
value of the coefficient of variation than does the log-normal
distribution (Firth 1988; Cadigan and Myers 2001).

The conditional distribution of electrical resistivity given
water saturation, porosity and shale content f (r | Sw, ϕ, c),
which is used for joint inversion when the model parameters
rb, rc, m and n are given as fixed values, is different from that
when the model parameters are unknown. They are related
by:

f (r | Sw, ϕ, c) =
∫

f (r | Sw, ϕ, c,θ1) f (θ1)dθ1, (3)

where f (θ1) is the probability density function of the unknown
model parameter θ1. When the model parameters are given,
the probability density function f (θ1) becomes a delta func-
tion. Equation (3) suggests that uncertainty in the model pa-
rameter θ1 leads to an increase of uncertainty in the resistivity
calculated from equation (1). Figure 2 shows an example of
the conditional distribution of electrical resistivity when the
model parameters are uncertain and have uniform distribu-
tions. The figure depicts quantitatively how the uncertainty in
the resistivity predicted by the Poupon model increases as the
model parameters become more poorly constrained, given the
assumption of gamma-distributed model outputs.
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Figure 2 Conditional probability distributions given water saturation
(0.1), shale content (0.1) and porosity (0.32) as brine resistivity, shale
resistivity and the exponential components of water saturation and
porosity in the Poupon model vary uniformly around their corre-
sponding true values, where the red, blue and green curves are the
results when the relative errors are 1, 3 and 5%, respectively.

Elastic bulk and shear moduli and density

We relate elastic bulk and shear moduli and density to reser-
voir parameters using a clay-sand mixture model developed
by Xu and White (1995), based on the effective medium theo-
ries given by Gassmann (1951) and Kuster and Toksöz (1974).
The main feature of the model lies in the assumptions that the
total pore space of the medium consists of pores in sand grains
and pores in clays and that the pore geometry of sand grains is
significantly different from that of clays. As a result, the effect
of porosity in shale on elastic properties is very different from
the effect of porosity in sandstone. The Xu-White model has
been demonstrated to be useful under a wide range of condi-
tions, for example, in formations varying from unconsolidated
to consolidated sandstone and shale.

The main parameters associated with the Xu-White model
include the bulk and shear moduli and density of sand grains,
clay and fluid and the pore aspect ratios of sand and clay.
Since the Xu-White model assumes that there are only two
phases (i.e., water and either oil or gas), the reservoir param-
eters that affect reservoir elastic bulk and shear moduli and
density are water saturation, clay content and porosity. For
ease of description, we use the vector θ2 to represent all the

model parameters and consider them to be random variables
in order to account for their uncertainties. The model param-
eters can be estimated with uncertainty from well log data by
adjusting them to provide a good prediction of elastic moduli
and density, given porosity, water saturation and shale con-
tent. Figure 3 shows the relationship of elastic bulk and shear
moduli and density versus water saturation, shale content and
porosity using the Xu-White model and parameters given in
Table 1. We can see that elastic moduli are most sensitive to
changes in porosity and less sensitive to changes in shale con-
tent and water saturation, especially when water saturation is
small.

To account for the uncertainty in the Xu-White model for a
given set of model parameters, we assume that the estimated
elastic moduli and density calculated from reservoir param-
eters using the Xu-White model are distributed according to
a multivariate Gaussian distribution with means equal to the
outputs of the Xu-White model and a covariance matrix de-
termined from a given correlation structure and coefficients
of variation. For the synthetic study presented in the fourth
section, we assume that each output of the Xu-White model
is independent of the other outputs. For other studies, we can
use any desired correlation structure.

Let variables K, μ and ρ represent reservoir elastic bulk
and shear moduli and density, respectively. Let εK, εμ and ερ

represent the additive errors in the outputs of the Xu-White
model. Let mrock represent the Xu-White model. Thus,

(K, μ, ρ)T = mrock(Sw, ϕ, c,θ2) + (εK , εμ, ερ)T. (4)

The joint conditional probability density function of the
elastic attributes is given by:

f (K, μ, ρ | Sw, ϕ, c,θ2) = 1√
(2π )3 |
| exp

(−εT
−1ε
)
, (5)

where the symbol ε = (εK, εμ, ερ)T and the symbol 
 rep-
resent the covariance matrix of the error vector ε, which is
determined from the given coefficients of variation.

B AY E S I A N M O D E L

In this section, we extend the Bayesian model developed by
Chen et al. (2007) for reservoir parameter estimation using
seismic amplitude variation with angle (AVA) and controlled-
source electromagnetics (CSEM) data. The primary difference
between the present study and the one presented by Chen et al.

(2007) lies in the use of stochastic rock-physics models, where
the reservoir geophysical attributes calculated from their cor-
responding reservoir parameters using rock-physics models
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Figure 3 Relationships of elastic moduli and density versus water saturation, shale content and porosity calculated using the Xu-White model
and parameters given in Table 1, where shale content is 0.1 and porosity is 0.32 for (a), water saturation is 0.1 and porosity is 0.32 for (b) and
both water saturation and shale content are 0.1 for (c).

Table 1
Model parameters in the Xu-White model

Model Parameters Values

Sand bulk modulus (GPa) 42.584
Sand shear modulus (GPa) 40.470
Sand density (g/cm3) 2.6500
Sand aspect ratio 0.0900
Clay bulk modulus (GPa) 34.260
Clay shear modulus (GPa) 18.504
Clay density (g/cm3) 2.6800
Clay aspect ratio 0.0600
Brine bulk modulus (GPa) 3.2200
Brine density (g/cm3) 1.0900
Oil bulk modulus (GPa) 0.7500
Oil density (g/cm3) 0.70910

are random functions of the reservoir parameters rather than
deterministic values.

Bayesian framework

Figure 4 shows a schematic of a layered marine reservoir with
unknown parameters that we wish to estimate. In the target

zone (the reservoir layer), we estimate water saturation Sw,
porosity ϕ and shale content c. Similar to the model studied
by Chen et al. (2007), we add several layers above and be-
low the reservoir to account for uncertainty in selecting the
time window for seismic AVA data inversion. For those lay-
ers, we invert for elastic bulk modulus K0, shear modulus μ0

and density ρ0. Because resistivity in the seawater and in the
overburden and bedrock also affects estimates of reservoir pa-
rameters, we also consider the overlying resistivity model as
unknown in this model and denote it by the vector r0, which
contains the resistivity values at a small number of depths
above the target zone.

We generalize the Bayesian model developed by Chen et al.

(2007) by considering the inverted reservoir geophysical prop-
erties, such as reservoir elastic bulk modulus K, shear modulus
μ, density ρ and electrical resistivity r to be random variables.
Let the matrix R represent seismic AVA data, which are func-
tions of elastic properties in the reservoir (i.e., K, μ and ρ)
and in the zones outside the reservoir (i.e., K0, μ0, ρ0). Let the
matrix E represent CSEM data, which are functions of reser-
voir resistivity r and resistivity r0 in the seawater, the overbur-
den and the rock beneath the reservoir (to a depth depending
on skin depth). Since seismic AVA and CSEM data are two

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 00, 1–14
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Figure 4 A schematic depiction of a layered reservoir.

different types of geophysical measurements, we assume that
they are independent of each other. Consequently, we obtain
the following Bayesian model:

f (Sw, c,φ, K,μ,ρ, K0,μ0,ρ0, r, r0,θ1,θ2 | R, E) ∝
f (R | K,μ,ρ, K0,μ0,ρ0) f (E | r, r0)

f (r | Sw,φ, c,θ1) f (K,μ,ρ | Sw,φ, c,θ2)

f (Sw, c,φ, K0,μ0,ρ0, r0,θ1,θ2)

. (6)

Equation (6) defines a joint posterior probability distribution
function of all unknown parameters, which is known up to a
normalizing constant. The first and second terms on the right
side of the equation are the likelihood functions of seismic AVA
and CSEM data, respectively. The third and fourth terms on
the right side of the equation are the conditional probability
distribution functions given reservoir parameters and rock-
physics model parameters, which are new terms compared to
the model presented by Chen et al. (2007) and are given by
equations (2) and (5), respectively. The last term on the right
side of the equation is the prior distribution of the unknown
variables, which parameterize the reservoir and surrounding
medium and the rock-physics models.

Likelihood models

The likelihood functions for seismic AVA and CSEM data in
this study are similar to the ones used by Chen et al. (2007),
with differences in the input of each likelihood function. Seis-
mic reflectivity is a function of the elastic properties in the
reservoir and in the zones outside the reservoir and is calcu-

lated using the Zoeppritz equations (Zoeppritz 1919) in this
study. The seismic data are modelled by convolving the re-
flectivity with a Ricker wavelet of a given frequency and they
are functions of time and incidence angle. Let the seismic data
matrix be R = {rij}, where i = 1, 2, · · ·, mt (mt is the number
of time samples) and j = 1, 2, · · ·, ma (ma is the number of
incidence angles). Then,

ri j = Ma
i j (K,μ,ρ, K0,μ0,ρ0) + εa

i j , (7)

where Ma
ij is the ij − th component of the seismic AVA for-

ward model and εa
ij is the corresponding measurement er-

ror. Let ε = (εa
11, ε

a
21, · · · , εa

mt1
, εa

12, ε
a
22 · · · , εa

mt2
, · · · , εa

mtma
)T be

a vector representing all the measurement errors. Let n = mamt

be the total number of seismic data measurements in a given
time window. In order to model the correlation of the mea-
surement errors in time and across incidence angle, we assume
that they are described by a multivariate Gaussian distribution
with zero mean and covariance matrix Σ, as used by Buland
and Omre (2003). Consequently, we write the likelihood func-
tion for the seismic data as follows:

f (R|K,μ,ρ, K0,μ0,ρ0) = 1√
(2π )n |Σ| exp

(
−1

2
εTΣ−1ε

)
,

(8)

where |Σ| and Σ−1 denote the determinant and the inverse of
the covariance matrix Σ, respectively.

The likelihood function for CSEM data is developed by con-
sidering the real and imaginary components of the recorded
electric (and possibly magnetic; however, we have used only
electric field data in this study) fields as data, which are
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collected at various offsets for different frequencies. These
data are functions of electrical resistivity, which is a function
of depth. Let the CSEM data matrix be E = {eijk}, where i = 1,
2, · · · , nf represents different frequencies of the CSEM sources,
j = 1, 2, · · · , no represents different offsets and k = 1, 2 rep-
resents the real and quadrature components of the recorded
electric field. Thus,

ei jk = Me
i jk(r, r0) + εe

i jk, (9)

where Me
ijk is the ijk − th component of the CSEM forward

model and εe
ijk is the corresponding measurement error. Un-

like for the seismic AVA data, we consider only uncorrelated
electrical noise in this study. We assume that the errors in the
CSEM data are proportional to the corresponding measured
values with a random ratio εr

ijk, i.e., εe
ijk = εr

ijkeijk. We assume
that the relative ratio εr

ijk has a Gaussian distribution with zero
mean and standard deviation β j that is specified and may de-
pend on offset, typically increasing from near to far offset,
for example, from 3 to 5 percent. As a result, we obtain the
following likelihood function for CSEM data:

f (E | r, r0) =
n f∏
i=1

no∏
j=1

2∏
k=1

1√
2πβ2

j

× exp

{
− 1

2β2
j

(
ei jk − Me

i jk(r, r0)

ei jk

)2
}

. (10)

We couple seismic AVA data with CSEM data by assuming the
presumed reservoir has fixed boundaries in depth as shown in
Fig. 4. We also assume that the depth interval of interest is
common to both seismic AVA and CSEM calculations, as con-
sidered by Hoversten et al. (2006) and Hou et al. (2006). These
assumptions can be removed if we consider the layer thickness
or location of the reservoir as unknowns and use, for exam-
ple, traveltime information to invert for their positions, but
this is not the focus of this study. With the given common layer
thickness and the rock-physics models presented in the second
section, we can jointly invert the seismic AVA and CSEM data
for unknown reservoir parameters.

Prior models

The prior distribution is determined according to several rea-
sonable assumptions of independence among the unknown
variables. For example, we assume that the unknown reser-
voir parameters Sw, φ and c are independent of the unknown
variables K0, μ0 and ρ0 in the layers outside the reservoir,
while realizing that in some geophysical situations these prop-
erties could be correlated to some extent. We also assume that

water saturation Sw is independent of porosity φ and shale
content c and that porosity φ is independent of shale con-
tent c. We further assume that the electrical resistivity r0 in
the overburden and sub-reservoir rock is independent of the
elastic properties K0, μ0 and ρ0 in the thin layers above and
beneath the reservoir. We assume that the elastic properties K0,
μ0 and ρ0 are independent of each other. Finally, we assume
that the unknown rock-physics model parameters θ1 and θ2

are independent of all the other parameters. Consequently, we
can simplify the prior distribution function as:

f (Sw, ϕ, c, K0, μ0,ρ0, r0,θ1,θ2)

= f (Sw) f (ϕ) f (c) f (K0) f (μ0) f (ρ0) f (r0) f (θ1) f (θ2). (11)

We assume that the prior distribution of each unknown pa-
rameter in equation (11) is given by a uniform probability
distribution with a specified range. For the synthetic study
presented in the fourth section, the prior ranges of water sat-
uration, porosity and shale content are given by (0, 1), (0.01,
0.4) and (0, 1), respectively. The prior ranges of elastic moduli
and density and overburden resistivity are given by the lower
and upper bounds that are 5% away from their correspond-
ing true values. The prior ranges of the rock-physics model
parameters are determined by the given coefficients of varia-
tion, which vary among the case studies that we present.

Sampling methods

We use Markov chain Monte Carlo sampling methods to ex-
plore the joint posterior probability distribution function de-
scribed by equation (6). Similar to the sampling strategies used
by Chen et al. (2007), we adopt a mixed sampling method as
advocated by Tierney (1994), which includes single-variable
Metropolis-Hastings methods (Metropolis et al. 1953;
Hastings 1970), multivariate Metropolis-Hastings methods,
single-variable slice sampling methods (Neal 2003) and mul-
tivariate slice sampling methods. At each sampling step, we
randomly pick one of the above four methods. This strategy
has been shown to be very efficient for solving this type of
joint inversion problem.

S Y N T H E T I C C A S E S T U D Y

In this section, we investigate the effects of uncertainty and
biases in rock-physics models on the estimates of reservoir
parameters by applying the developed Bayesian model to
a synthetic layered reservoir, built according to a typical
deep-water clastic geophysical scenario, such as might be
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encountered in the Gulf of Mexico or in offshore West Africa.
We primarily compare the estimates of reservoir parameters
when uncertainty and biases are incorporated into the joint
inversion with those when uncertainty and biases are not fully
taken account in the estimation, as is done in conventional
inversion approaches. Since our purpose in this study is to in-
vestigate the effect of uncertainty in rock-physics models, we
keep the synthetic model simple while using model param-
eters that are representative of those found in actual clastic
reservoirs in sedimentary basins.

Synthetic true model

The synthetic model includes an oil reservoir embedded in a
shale package. The reservoir is assumed to consist of one layer
with a thickness of 50 m and with shale content c, porosity
φ and water saturation Sw of 0.1, 0.32 and 0.1, respectively.
Figure 5 shows the vertical profiles of water saturation, shale
content and porosity from the water surface to a depth of
4000 m, with the seafloor located at 1120 m from the water
surface. The water saturation and shale content in the rock be-
neath the seafloor are constant (100%), while porosity varies
with depth, except in the oil reservoir, where both water satu-
ration and shale content are equal to 0.1 and porosity is equal
to 0.32.
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Figure 5 Vertical profiles of water saturation (a), shale content (b) and porosity (c) for the synthetic case study.

The synthetic seismic amplitude variation with angle (AVA)
data are normal-moveout corrected angle gathers that are gen-
erated by convolving a 25 Hz Ricker wavelet with the angle-
dependent reflectivity, which is calculated using the Zoeppritz
equations (Zoeppritz 1919) for each layer interface. Figure 6
shows the synthetic seismic AVA data without noise. The ver-
tical resolution of seismic data is a function of wavelength and
it is about 15 m for the synthetic study, which is smaller than
the thickness of the reservoir layer. The seismic traces are cal-
culated for seven incidence angles (5, 10, 15, 20, 25, 30 and
35 degrees) and are sampled at 2 ms. In reality, the seismic
AVA data are extracted from a predetermined time window
that covers the depth interval of interest and that is deter-
mined from check shots or from calculations of time-depth
pairs (Chen et al. 2007). To account for uncertainty in choos-
ing the time window, we add two 50 m thick layers above the
reservoir layer and one 50 m thick layer below the reservoir
layer.

The marine controlled-source electromagnetics (CSEM)
data consist of the electric fields measured at six receivers
deployed on the seafloor from a ship-towed electric dipole
source at five different frequencies (0.10, 0.25, 0.50, 0.75
and 1.00 Hz). The six source-receiver offsets are 4, 5, 6, 7,
8 and 10 km, respectively. Figure 7 shows the amplitudes and
phases of recorded electric fields with offsets from 4,000 m to
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10,000 m for frequencies of 0.25 Hz, 0.5 Hz and 0.75 Hz.
The spatial resolution of CSEM data is significantly lower
than that of seismic AVA data. Unlike seismic data where the
vertical resolution is proportional to seismic wavelength, the
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Figure 7 Synthetic CSEM data at the frequencies of 0.25 Hz, 0.50 Hz and 0.75 Hz.

spatial resolution of the electromagnetic data is mainly limited
by the noise level in the data and by the source-receiver spac-
ing (Hesthammer and Boulaenko 2005; Hokstad and Rosen
2007). With the use of the synthetic seismic and CSEM data,
a thickness of 50 m for the reservoir layer seems to be a rea-
sonable choice for the joint inversion which was also used by
Hesthammer and Boulaenko (2005) in their real case study.
Because CSEM data are sensitive to the resistivity profile to a
depth of several skin depths (i.e., a few thousands of metres),
in order to account for the effects of electrical resistivity in
the overburden and bedrock on the recorded CSEM data, we
divide the overburden into five layers. We jointly invert the
resistivity in the five overburden layers and in the bedrock.

Since our focus in this study is on the effects of uncertainty
and bias in rock-physics models, we invert the true seismic AVA
and CSEM data in the subsequent case studies, although we
assume that the generated synthetic data include various levels
of noise. This is because inverting data with actual noise added
may lead to results that depart from the true models due to
conditioning on the specific noise realization utilized in the
inversion. We assume that the synthetic seismic data include
spatially correlated Gaussian random noise and that the spa-
tial correlation of the noise is determined by an exponential
variogram with an integral length of 2 ms. The variance of
the Gaussian noise is angle dependent, with signal-to-noise
ratios of 12, 11, 10, 9, 8, 7 and 5 from the near to the far
offset. For the CSEM data, we assume relative noise levels
that increase from 3 to 5% from the near to the far offset. We
did not put a relative weight between the seismic and CSEM
data as done by deterministic inversion methods, which is
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implicitly carried out by the errors in seismic and CSEM data
in this study.

Uncertainty in rock-physics model predictions

We vary the additive errors in the outputs of the rock-physics
models by specifying various levels of the coefficient of varia-
tion. Figure 8 shows the estimated marginal posterior proba-
bility density functions of the inverted water saturation, shale
content and porosity using synthetic seismic AVA and CSEM
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Figure 8 Estimated marginal posterior probability density functions
of water saturation, shale content and porosity, where the black, red,
blue and green curves are the estimated posterior probability density
functions when the predictions of the rock-physics models are exact
or have errors equivalent to coefficients of variation of 1, 3 and 5%,
respectively.

data when the predictions of the rock-physics models con-
tain various levels of uncertainty. The black, red, blue and
green curves are the estimated posterior probability density
functions when the rock-physics models are exact or have er-
rors equal to the coefficients of variation of 1, 3 and 5%,
respectively. The black triangles are the true values of wa-
ter saturation, shale content and porosity. Comparison of the
estimated marginal probability density functions to the corre-
sponding true values shows that uncertainty in the outputs of
rock-physics models has a significant effect on the estimates of
reservoir parameters. As the coefficients of variation increase,
the spread of the estimated probability density functions in-
creases and the medians of the estimated probability density
functions of shale content and porosity shift toward the centre
of each prior range (0.5 for shale content and 0.2 for porosity).
From the figure, we also note that the estimate of water satu-
ration is much less sensitive to uncertainty in the outputs of the
rock-physics models compared to shale content and porosity.

Uncertainty in rock-physics model parameters

Uncertainty in rock-physics model parameters is often under-
estimated or ignored in conventional approaches for geophys-
ical inversion due to the difficulty of incorporating it into the
estimation. The Bayesian model developed in this paper pro-
vides a general framework for investigating different sources
of uncertainty simultaneously. To compare with the effects of
uncertainty in rock-physics model predictions, we also use the
coefficient of variation to measure uncertainty in rock-physics
model parameters. Let (a, b) be the interval on which the rock-
physics model parameter θ is uniformly distributed. Let q be
the coefficient of variation of the parameter θ . The mean and
variance of the variable are given by (a + b)/2 = θ and (b −
a)2/12 = (qθ )2, respectively. By solving the above two equa-
tions, we obtain a = (1 − √

3q)θ and b = (1 + √
3q)θ .

Figure 9 compares the estimated marginal posterior proba-
bility density functions of the inverted water saturation, shale
content and porosity when the rock-physics model parameters
are exact or have errors equivalent to the coefficients of vari-
ation of 1, 3 and 5%. In this case, we assume that the outputs
of the rock-physics models do not include any additive errors.
Like uncertainty in the predictions of the rock-physics mod-
els, uncertainty in the model parameters also affects the esti-
mates of reservoir parameters significantly. Again, water satu-
ration is less sensitive to uncertainty in the model parameters
than shale content and porosity and the distribution widths
(uncertainties) increase with the coefficients of variation of
the model parameters. However, compared with uncertainty
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Figure 9 Estimated marginal posterior probability density functions
of water saturation, shale content and porosity, where the black, red,
blue and green curves are the estimated posterior probability density
functions when the rock-physics model parameters are exact or have
errors equivalent to coefficients of variation of 1, 3 and 5%, respec-
tively.

in rock-physics model predictions (Figure 8), the effects of
uncertainties in the model parameters are less significant, es-
pecially for the larger values of the coefficient of variation.

Biases in rock-physics models

In practice, rock-physics models may include unknown biases
and they may have significant effects on the estimates of reser-
voir parameters in the joint inversion of seismic and CSEM
data. Figure 10 shows the estimated pairwise posterior proba-
bility density functions of water saturation, shale content and

porosity when the rock-physics model predictions are unbi-
ased (black curves) or have negative biases that are equal to
1% (red curves) and 3% (blue curves) of the corresponding
true model predictions. The effects of biases in the model pre-
dictions on the inverted parameters are quite complex. The es-
timated water saturation and porosity decrease, whereas the
estimated shale content increases. Essentially, in order to be
compatible with the same seismic amplitude variation with
angle (AVA) and controlled-source electromagnetics (CSEM)
data, the outputs of the new rock-physics models have to be
increased to compensate for the reduction in reservoir geo-
physical attributes due to the added negative biases.

Biases in rock-physics model parameters

Similarly, the parameters associated with rock-physics mod-
els may also suffer from unknown biases and they may
have important effects on reservoir parameter estimation.
Figure 11 shows the estimated pairwise posterior probabil-
ity density functions of water saturation, shale content and
porosity when the model parameters are unbiased or have
biases equal to 1 and 3% of the corresponding true values.
Again, the estimated reservoir parameters shift. The water sat-
uration and porosity increase but the estimated shale content
decreases. Note that the introduction of biases does not nec-
essarily lead to appreciable spreading of the posterior proba-
bility distributions. Therefore, it could be difficult to diagnose
the presence of such biases in the rock-physics models by ex-
amining the inversion results.

D I S C U S S I O N A N D C O N C L U S I O N S

We have developed a Bayesian model to investigate the effects
of uncertainty in rock-physics models on reservoir parameter
estimation and have applied it to a synthetic layered reser-
voir. The results of the case study show that uncertainty in
both the outputs and the parameters of rock-physics models
may have significant effects on the estimates of reservoir pa-
rameters when we jointly invert seismic AVA and CSEM data.
While it is certainly clear that model uncertainties would lead
to a reduction of the reliability of parameter estimation, our
method provides a means of studying the magnitude of these
errors quantitatively. Generally, the effects of uncertainty in
rock-physics model parameters are less significant than those
of uncertainty in rock-physics model predictions.

Note that in our synthetic case study, we investigate the
effects of uncertainty in rock-physics model predictions and in
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Figure 10 Contours of the estimated pairwise posterior probability
density functions of water saturation, shale content and porosity when
the predictions of the rock-physics models are unbiased (black curves)
or have negative biases that are equal to 1% (red curves) and 3% (blue
curves) of their corresponding true values.
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Figure 11 Contours of the estimated pairwise posterior probability
density functions of water saturation, shale content and porosity when
the parameters of the rock-physics models are unbiased (black curves)
or have negative biases that are equal to 1% (red curves) and 3% (blue
curves) of their corresponding true values.

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 00, 1–14



Effects of uncertainty in rock-physics models 13

their associated parameters separately. In practice, they may be
and are likely to be, present together and their compound ef-
fects on the estimates of reservoir parameters typically are not
more than the simple summation of the effects caused by the
two different types of uncertainty. However, as shown in the
synthetic study, totally ignoring uncertainty in rock-physics
model predictions, in their associated parameters, or in both
quantities, will very likely lead to over-optimistic estimates of
the reliability of inverted reservoir parameters. Additionally,
we assign the same levels of uncertainty to all the outputs
and the parameters of rock-physics models. In reality, some
model predictions or some model parameters may be subject
to larger degrees of uncertainty than others and their assem-
bled effects could be worse than what we have shown in the
synthetic case study. This poses another risk when the uncer-
tainty in rock-physics models is not taken into consideration
in the joint inversion.

We have also demonstrated the effects of biases in rock-
physics models on the estimates of reservoir parameters. As
shown in the synthetic study, unknown biases in both rock-
physics model predictions and in the model parameters will
result in very misleading results for the joint inversion. For
instance, the modes or the medians of the estimated poste-
rior probability density functions of reservoir parameters are
shifted away from their corresponding true values, as derived
when we assume that the outputs and the parameters of rock-
physics models are exact. In addition, since the unknown bi-
ases do not tend to induce a widening of the posterior prob-
ability distribution functions, we may not be able to find the
existence of such biases in the rock physics models by exam-
ining the inversion results.

The main goal of this study is to demonstrate the effects of
uncertainty in rock-physics models on reservoir parameter es-
timation in joint inversion of seismic AVA and CSEM data and
to raise awareness about those effects in the joint inversion.
Notice that the case study represented in this work is an ideal
case for reservoir parameter estimation, where we assume that
the seismic waveforms and the location of the target reservoir
can be estimated reasonably well. However, in practice, the
joint inversion may be subject to the effects of many other
uncertainties, such as errors in data acquisition and process-
ing, scale discrepancies between seismic AVA and CSEM data,
errors in estimation of seismic waveforms, errors in locations
of target reservoirs, etc. The relative effects of uncertainty in
rock-physics models on reservoir parameter estimation com-
pared to uncertainties in other sources associated with the
joint inversion depend on the specific problem. To evaluate
the assembled or compounding effects of those uncertainties,

an integrated approach is needed. The Markov chain Monte
Carlo sampling based Bayesian model developed in this study
provides a general framework for taking into account various
sources of uncertainty simultaneously in the joint inversion.
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